Liftings of vector fields to 1-forms on the r-jet prolongation of the cotangent bundle

نویسنده

  • W. M. Mikulski
چکیده

For natural numbers r and n ≥ 2 all natural operators T|Mfn T ∗(JrT ∗) transforming vector fields from n-manifolds M into 1-forms on JT ∗M = {j x(ω) | ω ∈ Ω(M), x ∈ M} are classified. A similar problem with fibered manifolds instead of manifolds is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The natural operators lifting 1 - forms to the r - jet prolongation of the cotangent bundle 1

First, we classify all natural operators T |M fn T (0,0)(Jr T ∗) transforming vector fields to functions on the r -jet prolongation Jr T ∗ of the cotangent bundle. Next, we classify natural operators T ∗|M fn T ∗(Jr T ∗) lifting 1-forms from n-manifolds to Jr T ∗. As an application we prove that for r ≥ 1 there is no canonical symplectic structure on Jr T ∗. We also solve similar problems with ...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

The Lie Algebra of Smooth Sections of a T-bundle

In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fie...

متن کامل

Symmetries and conserved quantities for minimal surfaces

We describe here a general method for finding symmetries of minimal surfaces in R3, namely transformations sending a minimal immersion to another minimal immersion. More specifically we will be looking for infinitesimal symmetries, i.e. vector fields tangent to a Lie group acting on the set of minimal surfaces. Using Nœther’s theorem, we derive conserved quantities, i.e. cohomology classes on H...

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010